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Classical and quantum decay of one-dimensional finite wells with oscillating walls
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To study the time decay law@DL) of quasibounded Hamiltonian systems we have considered two finite
potential wells with oscillating walls filled with noninteracting particles. We show that the TDL can be
qualitatively different for different movement of the oscillating wall at the classical level according to the
characteristic of trapped periodic orbits. However, quantum dynamics do not show such differences.
[S1063-651%97)12105-5

PACS numbe(s): 05.45+b

I. INTRODUCTION spacd 7] as a conservative system with two degrees of free-
dom.

Hamiltonian systems include meaningful information related Let us consider noninteracting point particles of mass
Y : . 9 ,unity moving inside a one-dimensional time-dependent po-
to the bounded transient dynamics. The feature of the TDL Sential well:

corresponding to a fully chaotic system has been well estab-

The time decay law$TDL’s) of classical quasibounded

lished. In a special way, the TDL's are greatly sensitive to » if q<0

the characteristic of the trapped periodic orbits. Systems hav- .

ing a fully hyperbolic set of trapped periodic orbits show a V(g,t)=1 0 if 0=g=a(t) 2.9
purely exponential TDL, while the TDL becomes algebraic if o jf a(t)<q ,

they have a parabolic subset of them. So, in the case of the
Sinai billiard[1] and the Bunimovich stadiufi2], paradigms that is, a perfectly reflecting one-dimensional box with an
of fully chaotic Hamiltonian systems, the existence of theoscillating wall according to the time-dependent lagt).
so-called bouncing ball orbitarabolic and nonisolated pe-  Looking at the graph of the position of one partijeas
riodic orbit9 gives algebraic long time tails in the TDL's @ function of timet, we can see that the system is equivalent
[3-5]. to a particle moving forwards in a two-dimensional infinite
On the other hand, it is a well known fact that the char-pipe with appropriate reflecting conditions at the boundary
acteristic and the distribution of periodic orbits in bounded[see Fig. 18] . The reflecting conditiorithe change of sign
systems are relevant subjects to quantify semiclassically sud¥ the relative velocity between the walls and the parficle
systemg6]. Imposes
To establish the influence of the periodic orbits in the
decay of quantum systems, in the present work we have stud-
ied the decay processes in two quasibounded systems whose .
trapped periodic orbits have different characteristics. vi=2a(t)—v; atg=a(t) ,
We show that the classical systems having trapped peri- . . .
odic orbits of different characteristics have qualitatively dif- whgrgvf (v;) is the vc_alp city of the particle aftgbeforg the
ferent TDL'’s, while the quantum analogues do not showCO"'.S'on'. Both velocities correspond to the slopes of the
such sensitivity. In other words, we show that two cIassicaF’tralght lines in th.eq ‘.’eFS“.St graphs ( = tana).
systems with exponential and algebraic TDL's, respectively, Leta(t) be periodic in time, s&(t)=a(t+ 7).

have algebraic quantum TDL'6QTDL'S) when they are Taking mtqdaccoulnt the tllme Iatttllce transle;tlofntﬁymraetry |
considered guantum systems. we can consider only an elemental segment of the channe

Our work is organized in the following way. In Sec. Il we S€ting periodic boundary conditions, naméty 7—t=0 so

introduce the classical systems whose TDL we study in Se¢atd(t=7)—q(t=0) andv(t=7)—v(t=0). So, the sys-
[ll. Section 1V is devoted to describing the quantum system em can be seenas a two—d|men3|'onal billiard where partlcles
and the numerical method that we have employed to com€aVing att=r7 emerge at=0 having the same velocity

pute the QTDL'’s. In Sec. V we show the resulting QTDL's. and the same positiog while the collisions at the walls
Finally, Sec. VI is devoted to conclusions. We include one@!loW the laws(2.2). In this version of the system, we have

Appendix to show some characteristics of the TDL's. two degrees of freedom associated to the coordinatesd
#=t—[t/7]7 (reduced timgwhere[ . .. ] means the integer

part[see Fig. 1)]. The conjugate momenta aveand — E
(kinetic energy, respectively.

When the potential well is given by rul@.l) particles

In the present work we deal with a kind of one- inside the box are bounded despite their velocities. On the
dimensional periodically driven Hamiltonian. The corre- other hand, if the oscillating wallat q=a(t)] is a finite
sponding system can be described in the extended phabarrier of potential heightV,, particles with velocities

Vi= —Uj at q:0 , (22)

Il. THE CLASSICAL SYSTEMS
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a(?)

FIG. 2. E (kinetic energy vs © (reduced timgat q=0. Poin-
caresurface section corresponding to the system when the wall at
g=a(t) oscillates harmonically. BotkE and ® are dimensionless
and the amplitude of the oscillation &= 0.2 (in units of(a),, see
the tex}.

(b)

FIG. 1. (a) One trajectory in the two-dimensional pipe version
of the system. The coordinates are the tinaad the position of the
particleq. (b) The same trajectory in the billiard version. This point
of view is obtained by exploiting the time lattice translation sym-

We have also considered sawtooth oscillations: In this

metry of the pipe setting=t—[t/7]7 as a coordinate. (1+4on) if O<t<1/4
a(t)y=4 (1+20)—4st if 1/4<t<3/4 (2.9
|v|>+/2V, will leave the well when they reach the wall. In (1-40)+4o6t if 3/4<t<l

this case, according to the characteristic of the dynamics,

which is controlled by the lava(t) of the oscillating wall,
the system can be transiently bounded.

The main feature of this system is that the periodic orbits
are parabolic and nonisolated. The two-dimensional equiva-

We have focused our attention on two particular ruleSient pilliard is like billiards with neutral boundaries as po-

a(t). In the following we taker as a unit of time and the

lygonal oneqd8,9]. For example, Fig. 3 shows a representa-

mean value ofa(t),(a);=1/7fga(t)dt as a unit of length
and we take the energies as dimensionlgisat is, they are
divided bym(a)?/?).

We have considered Harmonic oscillations:

tive periodic orbit. Looking at the billiard as map,

1.2

a(t)=1+ 8sin2mxt. (2.3

This system resembles the so-called full Fermi accelerator
model. Such a system was widely studied in simplified ver-
sions[7]. Figure 2 shows the Poincasarface section for
g=0 corresponding to the kinetic enerfyversusé. Here
we can distinguish three regions. The low energy region is
fully chaotic, the intermediate energy region shows mixed
dynamics(regular island surrounded by the chaotic)sead
finally in the adiabatic region the dynamics become regular
and we can see invariant curves.

Now we assume that the moving wall is a finite barrier of
potential height,. So, the particles can leave the well and
the limit between the bounded motion and the unbounded
one is the lineE=V,,

If Vg lies in the adiabatic region, that is, there is an in-
variant curve below the limit line, the system will remain
bounded. So to study the TDL we will s&ty less than the
lower invariant curve.

0.8

0.4 —

0.0

0.00 0.25 1.00

FIG. 3. One parabolic periodic orbit corresponding to the saw-
tooth oscillation. Hergj is the position of the particle whilé is the
reduced time.
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FIG. 4. E (kinetic energy vs ® atq=0. This Poincareurface (a)
section shows only the low energy region and it was generated by
one initial condition. The solid straight lines limit the initial popu- 1
lation that is mentioned in the text. The dashed line indicates the
depth of the well(it separates the bounded region and the un-
bounded region E and® are dimensionless.

{

T 0.1

(q(6=0),tan(#=0))—(q’'(6=1),tam’ (6=1)) , (2.5

\\I\H”

N/N,
the periodic orbit corresponds to a fixed point Df. A °
straightforward calculation shows thg? has eigenvalues 0.01 (A)
N1=A,=1 when it is linearized at this fixed point. So, it
corresponds to a parabolic periodic orbit. On the other hand,
given a fixed point §,tanyg), it can be shown that there
exists an interval off, | = (4min,Amax » SUCh that ¢, tana) is 1
a fixed point ifge |. That is, the fixed points are nonisolated.

N

L]

0-001 T T T R

0.1 1.0 10.0 100.0
lll. THE DECAY OF CLASSICAL SYSTEMS t

To study the TDL, we fill a portion of the bounded region (b)
with Ny=10 particles whose initial conditions are uni-
formly (random distributed inq andv =tana. We compute FIG. 5. (a) Log-linear plot of the remaining populatiok/N,
the ratioN(t)/N, of the remaining population as a function inside the well against (TDL). We have fixedr (the period of the
of time. moving wall as the unit of time anda), (the mean value of the
Let us remark that the initial population must be chosemosition of the moving wajlas the unit of length(A) corresponds
with low energy(in the chaotic regionto ensure the decay. to the harmonic oscillations system and it has an almost exponential
If not, particles can have initial conditions such that they will behavior while(B) corresponds to the sawtooth oscillations. In both
remain trapped because, in the case of harmonic oscillationsases the amplitude of the oscillationds: 0.2 and the depth of the
they can be on a regular island included in the boundedvell is V,=8.63.(b) The same curves 4g) but in a log-log plot to
region. On the other hand, we want to exclude the populatioshow the algebraic behavior ¢8).
of the region corresponding to very low energy to minimize
the effect of the asymptotic orbits to thirivial) parabolic 2 and the region that was initially populated. We have taken
subset of periodic orbits characterized By-0. These tra- g . =264 andE,,=5.35.
jectories are parallel lines to the time axis in the two- Figures %a) and Fb) show the results corresponding to
dimensional pipe version of the system and they corresponghe harmonic and sawtooth oscillations in a log-linear and a
to particles that, having=0, will never hit the boundary of |og-log plot, respectively. We can see that the curves are

the well (see Appendix So we have considered quite different. In the case of Fig.(® the log-linear plot
shows an almost exponential behavior for the harmonic os-
Emin<E<Emax- (38.)  cillations while Fig. %b), the log-log plot, shows an alge-

braic behavior for the sawtooth oscillations. Such a differ-
Figure 4 shows a part of the Poincanarface section of Fig. ence can be explained in terms of the features of the periodic
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orbits that are included in the trapped reg[@h In the case al?)
of harmonic oscillations, the trapped periodic orbits are hy- —
perbolic and isolatedaside from the subsdét=0 that was
not initially populated while they are parabolic and noniso-
lated (like the bouncing ball orbits of the Sinai billiardor D D
the sawtooth oscillations. We stress that the deviation of the - 10
exponential behavior in the case of harmonic oscillations can
be attributed to the population of the very low energy region
after collisions(see Appendix

Yo @ [

L=1

FIG. 6. The characteristic of the potential for the computation of

IV. QUANTUM SYSTEMS QTDL. The spatial grid has 4096 steps. The absorbing region is
To study the quantum analogues of the systems, we wa aéketd by the shaded rectangles at the boundaries. Each side has
to solve the time-dependent ScHiager equation Steps.
dato,ty . minimize the reflection and transmission coefficients of
if =H(q,t)|a,to,t) (4.1) V.. All computations were performed taking a time step

o At=0.00064 on a grid of 4096 steps of spatial sampling

Ag=0.00125. The absorbing region at the boundaries in-
cludes 250 spatial steps. This fact determines the value of
v. We have takerlJ,=14.79. Figures 6 summarizes the

|a,ty,to) being an initial condition andf(qg,t) the Hamil-
tonian operatoH = T(p) +V(q,t) , where

0 if 0=qg=a(t) characteristic of the potential for the present calculation.
V(g,t)= ) 4.2 On the other hand, we have changed the sharp step func-
Vo if a(t)<q . tion in the potential4.4) to a soft version, such as a Saxon-

We have employed a spectral metHdaist Fourier trans- Woods profile:

form (FFT)] based on the split of the evolution operator Vo
U(t,to) [10] defined by V(gq,t)= T+ expbla()2— 7]} 4.7
la,ty=U0(t,to)] ato). (4.3 aswas prescribed in RéfL2] to improve the convergence of

This technique was widely applied to solving boundedthe numerical method. We have found that to ensure conver-

2 ‘gence and stability, we need the potential to vary from
fggtggﬁelé'[% and transmission phenomena through mov V/10 to YV,/10 in two spatial stepaq. This determines the

Such a procedure is not useful with infinite potential bar_parameteb.
riers, so to avoid the infinite barrier gt=0, we have em-

ployed the symmetrized potential V. THE DECAY OF QUANTUM SYSTEMS
; To populate the quantum system in an equivalent way as
0 if 0<|g|=a(t) . ; . . ;
V(g,t)= _ (4.4  in the classical calculation, we consider the evolution of a
Vo if a(t)<|q] quantum ensemble given by
instead of potential4.2). R 1
We want to compute p(ty)= NEN |, tg,to){a,to,tol, (5.2
a(t)
Pa(t)=f |(a,to,t]q)|%dq, (4.5  whereN is the number of eigenstates of the static well of
—a(t)

depthVy,=V(q,t=0) whose eigenenergies lie in the region
that is, the probability to detect the particle inside the well atn Which we populated the classical system. Such a number
time't. depends on the value df. Setting an appropriate value we

Because the system can be unbounded we will have galculate

nonstationary leaving flux of probability going tp= * . a() 1
The spectral method automatically imposes periodic bound- P(t)zf (alp(t)|a)dg= NZ Pa(t). (5.2
ary conditions, so the flux of probability leaving at —a(t) aeN
g= +(—)dmax Will appear to be coming aj= — (+)gmax- . _
So we need to eliminate the leaving flux. To do this we haveVe have computed Eq(5.2) taking #=0.0255. For this
employed absorbing boundary conditidi]] and added an value there are ten bounded eigenstates of the static well

absorptive(purely imaginary static potential barrier whose eigenenergies are such thaf,<E<Epax.
The results are shown in Figs(af and db). The first
iUg iUg shows a log-linear plot where we can see that both curves,
VA:cost’f’[ (4= Az ] + cosH[ Y(q+ Uz ] (4.6 corresponding to harmonic oscillatiofisurve A) and saw-

tooth oscillations(curve B), have nonexponential behavior.
to the actualreal) time-dependent potential wel.4). Here, = The second one shows a log-log plot that evidences an alge-
Uy and y are real parameters whose values were chosen toraic law fromt>25 for both curves, unlike the classical
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(B)

P o1 / 0 t

FIG. 8. The fraction of initial conditions for which the first
collision on the moving wall occurs in times greater thaGiven
\ an initial position g, the velocities arev=tang such that
(A) - d’minS ¢S ¢max-

Lol

sults is exponential while the other is algebraic. This dissi-
0.01 T T T T T ] militude can be explained in terms of the diverse character-
0 10 20 30 40 50 60 70 istics of the trapped periodic orbits in the systems. On the
t other hand, the quantum systems do not show such a differ-
ence. We have obtained algebraic QTDL for both systems.
(@) However, the characteristic exponents of the QTDL are dif-
0.20 - ferent.
There are evidences that open quantum systems whose
classical counterparts are chaotic while remaining bounded
(with TDL almost exponential can originate algebraic
QTDL [15] with different characteristic exponents. This ef-
fect can be explained by the distributioBaussiah of reso-
nances, assuming an exponential decay of each resonance
and an initial population of them. Varying the initial popu-
lation, different characteristic exponents can be obtained.
Such algebraic decay does not seem to be related to the ex-
istence of parabolic periodic orbits that generate algebraic
TDL in classical systemg$5]. In our systems, the initial
population is the same for both systems so we think that the
different exponents can be originated by the distribution of
antiresonanceghat is, particular states that are refractory to

: absorb energy from the oscillating waihto each well.

70 On the other hand, in Ref§16,17 it is shown that, in
general, the QTDL corresponding to chaotic systems have a
long-time power tail ¢ 1/t#). The specific characteristic ex-
ponentB depends on the number of open channels for the
decay. In particular, for one open channel the exponent is

FIG. 7. (a) Log-linear plot corresponding to the QTDLB vs ~ g=15 [18]. This fact could be related to our result

t. Curve ) corresponds to harmonic oscillation. CurvB)(cor- =1 45 for the harmonic oscillating wall system. Moreover,

responds to sawtooth oscillation) Log-log plot for the same  he characteristic exponef, corresponding to nonchaotic

laws for t_>25_ to show the algebraic behavior. The units are thesystems for one open channel and strong coupling between

same as in Fig. 5. quasibound states and the continuum is close8+ol [19]

because of the widening of the distribution of resonance
behaviors where for the same time interval they are qualitagigths with respect to those corresponding to chaotic sys-
tively different[see Figs. &) and §b)]. Let us remark that tems. This result could be related to our regg#t 1.11 in the
even algebraically €1/t%), the characteristic exponents of case of a sawtooth oscillating wall system. These apparent
corresponding to the harmonic oscillation system is | conclusion, in spite of the fact that the classical sys-

B=1.45 while it isB=1.11 for the sawtooth oscillation sys- tems and the quantum systems considered in the present

tem. work are not completely analogousssentially because of

the smoothing of the quantum potentjave expect that the

TDL corresponding to the classical systems with the smooth-

ing potential will be the same as the step potential systems.

We have studied the time decay laws of two quasi-As we remark in Sec. lll, the TDL for the classical systems is
bounded systems in the framework of classical and quanturdetermined by the linear stability of the trapped periodic or-
mechanics. The classical results show that the TDL'’s of thdits and such a characteristic seems to be related to the time
two systems are qualitatively different. One of the TDL re-dependencénstead the spatial dependejpoé the potential.

(b)

VI. SUMMARY AND CONCLUSIONS
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i 0.0001 =
0.001 ] \
3 0.00001 =
00001 T HHHq T \HHH‘ T \HHH‘ T \HHH‘ 0_000001 T T \IHH‘ T 3 \IHH‘ T 11
0.1 1.0 10.0 100.0 1000.0 1 10 100
t t
(a) . :
FIG. 10. Log-log plot of the TDL corresponding to a harmonic
13 oscillating wall. In this cas&,=8.63,5=0.2, and the initial popu-
3 lation was uniform in the region shown in Fig. 4, which excludes
b the parabolic region. Here we can see the algebraic behavior for the
) long-time tail. We also draw a straight line of slope 2. The unit of
0.1

time and the unit of length are the same as in Fig. 5.

L1 JLILH;

Let us consider a well of dept¥,. We have calculated
N/N. 0.01 the TDL starting with the uniform population of the whole
0 trapped regior{that is, 0<sq<1 and —2Vo<v=\2V,].
Figure 9a) shows the TDL as a function of time. Here, we
can see an algebraic behavior, that is,

Lol

0.001
N(t)/Ngx 118 (A1)

1 JIJHH‘

0.0001 T IWHWH’ T IHHH‘ T \HHH‘ L WhereB:l'
1 10 100 1000 According to Ref.[3], we expect a subset of periodic

t parabolic orbits included in the bounded region. This subset
corresponds to particles that, having 0, generate trajecto-
(b) ries that are asymptotic to the horizontal paths0 in the
pipe version of our system.
FIG. 9. (a) Log-log plot of the TDL corresponding to a har- ~ Tg show this, let us consider(t), the fraction of initial
monic oscillating well system starting from the uniform population -gnditions that spend a timé greater than a given timeto

of whole trapped region. The depth of the well\§=0.78 and  yaach the oscillating wall. Looking at Fig. 8, we estimate, for
6=0.2. We have also drawn a straight line of slope 1 to clarify thet>2/W

characteristic exponent of the algebraic behavibr.Log-log plot
of the TDL corresponding to a harmonic oscillating wall. In this

caseV,=19.7,6=0.2 and the initial population is the same(as 1 tanpmay=(1—a)/t
that is,|v|<1.25. Here we can see the algebraic behavior for the n(t)= 2 v, dqg (1 )/td(ta%) , (A2)
long-time tail. We also draw a straight line of slope 1. The unit of 0 angmin=(1+4
time and the unit of length are the same as in Fig. 5.
so that
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APPENDIX Following Ref.[4], we assume for the long-time tail,

The present appendix is devoted to showing the effect in )
}hte dTDL when the very low energy region is initially popu- N(t)/NO%wft =mg(t’)dt’ , (A%)
ated. t'=t
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whereg(t)dt is the fraction of initial conditions for the first |, |<|v,..d< 2V, we expect that the TDL exhibits a cross-
collision with the moving wall occuring betweeh and  gyer between a stretched exponential and the algebraic decay
t+dt and w is the probability to leave the wall after one |gy (A1) for long times as shown in Fig.(§).
collision. As When the initial population excludes the very low energy
—dn region, that is,|v il <|v|<|vmad, We have numerical evi-
. . . 2
g(t)= TR (A5)  dence that the algebraic tail for long times follows$-1(see
Fig. 10. So, it differs in one respect from the precedent. This

we have the lawA1) for the TDL. We stress that in the case difference also occurs in the decay of other quasibounded

of Fig. 9a) the algebraic tail becomeBwZ/\/Z_VO but in  Hamiltonian systems when a parabolic region is initially
general, if we populate the low energy region such thaPopulated or it is populated in an indirect way[@0,21].
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