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Classical and quantum decay of one-dimensional finite wells with oscillating walls

A. J. Fendrik and D. A. Wisniacki
Departamento de Fı´sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria,

1428, Buenos Aires, Argentina
~Received 8 October 1996; revised manuscript received 30 December 1996!

To study the time decay laws~TDL! of quasibounded Hamiltonian systems we have considered two finite
potential wells with oscillating walls filled with noninteracting particles. We show that the TDL can be
qualitatively different for different movement of the oscillating wall at the classical level according to the
characteristic of trapped periodic orbits. However, quantum dynamics do not show such differences.
@S1063-651X~97!12105-5#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

The time decay laws~TDL’s! of classical quasibounde
Hamiltonian systems include meaningful information rela
to the bounded transient dynamics. The feature of the TD
corresponding to a fully chaotic system has been well es
lished. In a special way, the TDL’s are greatly sensitive
the characteristic of the trapped periodic orbits. Systems h
ing a fully hyperbolic set of trapped periodic orbits show
purely exponential TDL, while the TDL becomes algebraic
they have a parabolic subset of them. So, in the case o
Sinai billiard@1# and the Bunimovich stadium@2#, paradigms
of fully chaotic Hamiltonian systems, the existence of t
so-called bouncing ball orbits~parabolic and nonisolated pe
riodic orbits! gives algebraic long time tails in the TDL’
@3–5#.

On the other hand, it is a well known fact that the ch
acteristic and the distribution of periodic orbits in bound
systems are relevant subjects to quantify semiclassically s
systems@6#.

To establish the influence of the periodic orbits in t
decay of quantum systems, in the present work we have s
ied the decay processes in two quasibounded systems w
trapped periodic orbits have different characteristics.

We show that the classical systems having trapped p
odic orbits of different characteristics have qualitatively d
ferent TDL’s, while the quantum analogues do not sh
such sensitivity. In other words, we show that two classi
systems with exponential and algebraic TDL’s, respective
have algebraic quantum TDL’s~QTDL’s! when they are
considered quantum systems.

Our work is organized in the following way. In Sec. II w
introduce the classical systems whose TDL we study in S
III. Section IV is devoted to describing the quantum syste
and the numerical method that we have employed to c
pute the QTDL’s. In Sec. V we show the resulting QTDL’
Finally, Sec. VI is devoted to conclusions. We include o
Appendix to show some characteristics of the TDL’s.

II. THE CLASSICAL SYSTEMS

In the present work we deal with a kind of on
dimensional periodically driven Hamiltonian. The corr
sponding system can be described in the extended p
551063-651X/97/55~6!/6507~7!/$10.00
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space@7# as a conservative system with two degrees of fr
dom.

Let us consider noninteracting point particles of ma
unity moving inside a one-dimensional time-dependent
tential well:

V~q,t !5H ` if q,0

0 if 0<q<a~ t !

` if a~ t !,q ,

~2.1!

that is, a perfectly reflecting one-dimensional box with
oscillating wall according to the time-dependent lawa(t).

Looking at the graph of the position of one particleq, as
a function of timet, we can see that the system is equivale
to a particle moving forwards in a two-dimensional infini
pipe with appropriate reflecting conditions at the bound
@see Fig. 1~a!# . The reflecting condition~the change of sign
of the relative velocity between the walls and the partic!
imposes

v f52v i at q50 ,
~2.2!

v f52ȧ~ t !2v i at q5a~ t ! ,

wherev f (v i) is the velocity of the particle after~before! the
collision. Both velocities correspond to the slopes of t
straight lines in theq versust graphs (v5tana).

Let a(t) be periodic in time, soa(t)5a(t1t).
Taking into account the time lattice translation symme

we can consider only an elemental segment of the cha
setting periodic boundary conditions, namelyt5t→t50 so
that q(t5t)→q(t50) andv(t5t)→v(t50). So, the sys-
tem can be seen as a two-dimensional billiard where parti
leaving att5t emerge att50 having the same velocityv
and the same positionq while the collisions at the walls
follow the laws~2.2!. In this version of the system, we hav
two degrees of freedom associated to the coordinatesq and
u5t2@ t/t#t ~reduced time! where@ . . . # means the intege
part @see Fig. 1~b!#. The conjugate momenta arev and2E
~kinetic energy!, respectively.

When the potential well is given by rule~2.1! particles
inside the box are bounded despite their velocities. On
other hand, if the oscillating wall@at q5a(t)# is a finite
barrier of potential heightV0, particles with velocities
6507 © 1997 The American Physical Society
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uvu.A2V0 will leave the well when they reach the wall. I
this case, according to the characteristic of the dynam
which is controlled by the lawa(t) of the oscillating wall,
the system can be transiently bounded.

We have focused our attention on two particular ru
a(t). In the following we taket as a unit of time and the
mean value ofa(t),^a& t51/t*0

ta(t)dt as a unit of length
and we take the energies as dimensionless~that is, they are
divided bym^a& t

2/t2).
We have considered Harmonic oscillations:

a~ t !511dsin2pt. ~2.3!

This system resembles the so-called full Fermi acceler
model. Such a system was widely studied in simplified v
sions @7#. Figure 2 shows the Poincare´ surface section for
q50 corresponding to the kinetic energyE versusu. Here
we can distinguish three regions. The low energy region
fully chaotic, the intermediate energy region shows mix
dynamics~regular island surrounded by the chaotic sea!, and
finally in the adiabatic region the dynamics become regu
and we can see invariant curves.

Now we assume that the moving wall is a finite barrier
potential heightV0. So, the particles can leave the well a
the limit between the bounded motion and the unboun
one is the lineE5V0.

If V0 lies in the adiabatic region, that is, there is an
variant curve below the limit line, the system will rema
bounded. So to study the TDL we will setV0 less than the
lower invariant curve.

FIG. 1. ~a! One trajectory in the two-dimensional pipe versio
of the system. The coordinates are the timet and the position of the
particleq. ~b! The same trajectory in the billiard version. This poi
of view is obtained by exploiting the time lattice translation sy
metry of the pipe settingu5t2@ t/t#t as a coordinate.
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We have also considered sawtooth oscillations: In t
case,

a~ t !5H ~114dt ! if 0<t<1/4

~112d!24dt if 1/4,t<3/4

~124d!14dt if 3/4,t,1 .

~2.4!

The main feature of this system is that the periodic orb
are parabolic and nonisolated. The two-dimensional equ
lent billiard is like billiards with neutral boundaries as p
lygonal ones@8,9#. For example, Fig. 3 shows a represen
tive periodic orbit. Looking at the billiard as mapT ,

FIG. 2. E ~kinetic energy! vs Q ~reduced time! at q50. Poin-
carésurface section corresponding to the system when the wa
q5a(t) oscillates harmonically. BothE andQ are dimensionless
and the amplitude of the oscillation isd50.2 ~in units of ^a& t , see
the text!.

FIG. 3. One parabolic periodic orbit corresponding to the sa
tooth oscillation. Hereq is the position of the particle whileu is the
reduced time.
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55 6509CLASSICAL AND QUANTUM DECAY OF ONE- . . .
„q~u50!,tana~u50!…˜
T
„q8~u51!,tana8~u51!… , ~2.5!

the periodic orbit corresponds to a fixed point ofT 2. A
straightforward calculation shows thatT 2 has eigenvalues
l15l251 when it is linearized at this fixed point. So,
corresponds to a parabolic periodic orbit. On the other ha
given a fixed point (q0 ,tana0), it can be shown that ther
exists an interval ofq, I5(qmin ,qmax), such that (q,tana0) is
a fixed point ifqPI . That is, the fixed points are nonisolate

III. THE DECAY OF CLASSICAL SYSTEMS

To study the TDL, we fill a portion of the bounded regio
with N05105 particles whose initial conditions are un
formly ~random! distributed inq andv5tana. We compute
the ratioN(t)/N0 of the remaining population as a functio
of time.

Let us remark that the initial population must be chos
with low energy~in the chaotic region! to ensure the decay
If not, particles can have initial conditions such that they w
remain trapped because, in the case of harmonic oscillati
they can be on a regular island included in the boun
region. On the other hand, we want to exclude the popula
of the region corresponding to very low energy to minimi
the effect of the asymptotic orbits to the~trivial! parabolic
subset of periodic orbits characterized byE50. These tra-
jectories are parallel lines to the time axis in the tw
dimensional pipe version of the system and they corresp
to particles that, havingv50, will never hit the boundary of
the well ~see Appendix!. So we have considered

Emin<E<Emax. ~3.1!

Figure 4 shows a part of the Poincare´ surface section of Fig

FIG. 4. E ~kinetic energy! vsQ at q50. This Poincare´ surface
section shows only the low energy region and it was generate
one initial condition. The solid straight lines limit the initial popu
lation that is mentioned in the text. The dashed line indicates
depth of the well~it separates the bounded region and the
bounded region!. E andQ are dimensionless.
d,

n

l
s,
d
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d

2 and the region that was initially populated. We have tak
Emin52.64 andEmax55.35.

Figures 5~a! and 5~b! show the results corresponding
the harmonic and sawtooth oscillations in a log-linear an
log-log plot, respectively. We can see that the curves
quite different. In the case of Fig. 5~a! the log-linear plot
shows an almost exponential behavior for the harmonic
cillations while Fig. 5~b!, the log-log plot, shows an alge
braic behavior for the sawtooth oscillations. Such a diff
ence can be explained in terms of the features of the peri

by

e
-

FIG. 5. ~a! Log-linear plot of the remaining populationN/N0

inside the well againstt ~TDL!. We have fixedt ~the period of the
moving wall! as the unit of time and̂a& t ~the mean value of the
position of the moving wall! as the unit of length.~A! corresponds
to the harmonic oscillations system and it has an almost expone
behavior while~B! corresponds to the sawtooth oscillations. In bo
cases the amplitude of the oscillation isd50.2 and the depth of the
well is V058.63.~b! The same curves as~a! but in a log-log plot to
show the algebraic behavior of~B!.
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6510 55A. J. FENDRIK AND D. A. WISNIACKI
orbits that are included in the trapped region@3#. In the case
of harmonic oscillations, the trapped periodic orbits are
perbolic and isolated~aside from the subsetE50 that was
not initially populated! while they are parabolic and noniso
lated ~like the bouncing ball orbits of the Sinai billiard! for
the sawtooth oscillations. We stress that the deviation of
exponential behavior in the case of harmonic oscillations
be attributed to the population of the very low energy reg
after collisions~see Appendix!.

IV. QUANTUM SYSTEMS

To study the quantum analogues of the systems, we w
to solve the time-dependent Schro¨dinger equation

i\
]ua,t0 ,t&

]t
5Ĥ~q,t !ua,t0 ,t& ~4.1!

ua,t0 ,t0& being an initial condition andĤ(q,t) the Hamil-
tonian operatorĤ5T̂( p̂)1V̂(q̂,t) , where

V~q,t !5H 0 if 0<q<a~ t !

V0 if a~ t !,q .
~4.2!

We have employed a spectral method@fast Fourier trans-
form ~FFT!# based on the split of the evolution operat
Û(t,t0) @10# defined by

ua,t&5Û~ t,t0!ua,t0&. ~4.3!

This technique was widely applied to solving bound
systems@11,12# and transmission phenomena through mo
ing barriers@13#.

Such a procedure is not useful with infinite potential b
riers, so to avoid the infinite barrier atq50, we have em-
ployed the symmetrized potential

V~q,t !5H 0 if 0,uqu<a~ t !

V0 if a~ t !,uqu
~4.4!

instead of potential~4.2!.
We want to compute

Pa~ t !5E
2a~ t !

a~ t !
u^a,t0 ,tuq&u2dq, ~4.5!

that is, the probability to detect the particle inside the wel
time t.

Because the system can be unbounded we will hav
nonstationary leaving flux of probability going toq56`.
The spectral method automatically imposes periodic bou
ary conditions, so the flux of probability leaving a
q51(2)qmax will appear to be coming atq52(1)qmax.
So we need to eliminate the leaving flux. To do this we ha
employed absorbing boundary conditions@14# and added an
absorptive~purely imaginary! static potential barrier

VA5
iU 0

cosh2@g~q2qmax!#
1

iU 0

cosh2@g~q1qmax!#
~4.6!

to the actual~real! time-dependent potential well~4.4!. Here,
U0 andg are real parameters whose values were chose
-
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minimize the reflection and transmission coefficients
VA . All computations were performed taking a time st
Dt50.00064 on a grid of 4096 steps of spatial sampli
Dq50.00125. The absorbing region at the boundaries
cludes 250 spatial steps. This fact determines the valu
g. We have takenU0514.79. Figures 6 summarizes th
characteristic of the potential for the present calculation.

On the other hand, we have changed the sharp step f
tion in the potential~4.4! to a soft version, such as a Saxo
Woods profile:

V~q,t !5
V0

11exp$b@a~ t !22q2#%
, ~4.7!

as was prescribed in Ref.@12# to improve the convergence o
the numerical method. We have found that to ensure con
gence and stability, we need the potential to vary fro
V0/10 to 9V0/10 in two spatial stepsDq. This determines the
parameterb.

V. THE DECAY OF QUANTUM SYSTEMS

To populate the quantum system in an equivalent way
in the classical calculation, we consider the evolution o
quantum ensemble given by

r̂~ t0!5
1

N(
aPN

ua,t0 ,t0&^a,t0 ,t0u, ~5.1!

whereN is the number of eigenstates of the static well
depthV05V(q,t50) whose eigenenergies lie in the regio
in which we populated the classical system. Such a num
depends on the value of\. Setting an appropriate value w
calculate

P~ t ![E
2a~ t !

a~ t !

^qur̂~ t !uq&dq5
1

N(
aPN

Pa~ t !. ~5.2!

We have computed Eq.~5.2! taking \50.0255. For this
value there are ten bounded eigenstates of the static
whose eigenenergies are such thatEmin<E<Emax.

The results are shown in Figs. 7~a! and 7~b!. The first
shows a log-linear plot where we can see that both curv
corresponding to harmonic oscillations~curveA) and saw-
tooth oscillations~curveB), have nonexponential behavio
The second one shows a log-log plot that evidences an a
braic law from t.25 for both curves, unlike the classica

FIG. 6. The characteristic of the potential for the computation
QTDL. The spatial grid has 4096 steps. The absorbing regio
marked by the shaded rectangles at the boundaries. Each sid
250 steps.
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55 6511CLASSICAL AND QUANTUM DECAY OF ONE- . . .
behaviors where for the same time interval they are qua
tively different @see Figs. 5~a! and 5~b!#. Let us remark that
even algebraically (}1/tb), the characteristic exponents o
the QTDL are quite different. The best fit for the QTD
corresponding to the harmonic oscillation system
b51.45 while it isb51.11 for the sawtooth oscillation sys
tem.

VI. SUMMARY AND CONCLUSIONS

We have studied the time decay laws of two qua
bounded systems in the framework of classical and quan
mechanics. The classical results show that the TDL’s of
two systems are qualitatively different. One of the TDL r

FIG. 7. ~a! Log-linear plot corresponding to the QTDL’sP vs
t. Curve (A) corresponds to harmonic oscillation. Curve (B) cor-
responds to sawtooth oscillations.~b! Log-log plot for the same
laws for t.25 to show the algebraic behavior. The units are
same as in Fig. 5.
-

s

-
m
e
-

sults is exponential while the other is algebraic. This dis
militude can be explained in terms of the diverse charac
istics of the trapped periodic orbits in the systems. On
other hand, the quantum systems do not show such a di
ence. We have obtained algebraic QTDL for both syste
However, the characteristic exponents of the QTDL are d
ferent.

There are evidences that open quantum systems w
classical counterparts are chaotic while remaining boun
~with TDL almost exponential! can originate algebraic
QTDL @15# with different characteristic exponents. This e
fect can be explained by the distribution~Gaussian! of reso-
nances, assuming an exponential decay of each reson
and an initial population of them. Varying the initial popu
lation, different characteristic exponents can be obtain
Such algebraic decay does not seem to be related to the
istence of parabolic periodic orbits that generate algeb
TDL in classical systems@5#. In our systems, the initia
population is the same for both systems so we think that
different exponents can be originated by the distribution
antiresonances~that is, particular states that are refractory
absorb energy from the oscillating wall! into each well.

On the other hand, in Refs.@16,17# it is shown that, in
general, the QTDL corresponding to chaotic systems hav
long-time power tail (}1/tb). The specific characteristic ex
ponentb depends on the number of open channels for
decay. In particular, for one open channel the exponen
b51.5 @18#. This fact could be related to our resu
b51.45 for the harmonic oscillating wall system. Moreove
the characteristic exponentb, corresponding to nonchaoti
systems for one open channel and strong coupling betw
quasibound states and the continuum is closer tob51 @19#
because of the widening of the distribution of resonan
widths with respect to those corresponding to chaotic s
tems. This result could be related to our resultb51.11 in the
case of a sawtooth oscillating wall system. These appa
connections are being studied.

In conclusion, in spite of the fact that the classical sy
tems and the quantum systems considered in the pre
work are not completely analogous~essentially because o
the smoothing of the quantum potential!, we expect that the
TDL corresponding to the classical systems with the smoo
ing potential will be the same as the step potential syste
As we remark in Sec. III, the TDL for the classical systems
determined by the linear stability of the trapped periodic
bits and such a characteristic seems to be related to the
dependence~instead the spatial dependence! of the potential.

FIG. 8. The fraction of initial conditions for which the firs
collision on the moving wall occurs in times greater thant. Given
an initial position q, the velocities arev5tanf such that
2fmin<f<fmax.

e
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APPENDIX

The present appendix is devoted to showing the effec
the TDL when the very low energy region is initially popu
lated.

FIG. 9. ~a! Log-log plot of the TDL corresponding to a ha
monic oscillating well system starting from the uniform populati
of whole trapped region. The depth of the well isV050.78 and
d50.2. We have also drawn a straight line of slope 1 to clarify
characteristic exponent of the algebraic behavior.~b! Log-log plot
of the TDL corresponding to a harmonic oscillating wall. In th
caseV0519.7,d50.2 and the initial population is the same as~a!,
that is, uvu<1.25. Here we can see the algebraic behavior for
long-time tail. We also draw a straight line of slope 1. The unit
time and the unit of length are the same as in Fig. 5.
in

Let us consider a well of depthV0. We have calculated
the TDL starting with the uniform population of the who
trapped region@that is, 0<q<1 and2A2V0<v<A2V0#.
Figure 9~a! shows the TDL as a function of time. Here, w
can see an algebraic behavior, that is,

N~ t !/N0}1/t
b , ~A1!

whereb51.
According to Ref.@3#, we expect a subset of periodi

parabolic orbits included in the bounded region. This sub
corresponds to particles that, havingv'0, generate trajecto
ries that are asymptotic to the horizontal pathsv50 in the
pipe version of our system.

To show this, let us considern(t), the fraction of initial
conditions that spend a timet8 greater than a given timet to
reach the oscillating wall. Looking at Fig. 8, we estimate,
t.2/A2V0,

n~ t !5
1

2A2V0
E dqE

2tanfmin5~11q!/t

tanfmax5~12q!/t
d~ tanf! , ~A2!

so that

n~ t !5
1

A2V0

1

t
. ~A3!

Following Ref.@4#, we assume for the long-time tail,

N~ t !/N0'vE
t85t

t85`
g~ t8!dt8 , ~A4!

e

e
f

FIG. 10. Log-log plot of the TDL corresponding to a harmon
oscillating wall. In this caseV058.63,d50.2, and the initial popu-
lation was uniform in the region shown in Fig. 4, which exclud
the parabolic region. Here we can see the algebraic behavior fo
long-time tail. We also draw a straight line of slope 2. The unit
time and the unit of length are the same as in Fig. 5.
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55 6513CLASSICAL AND QUANTUM DECAY OF ONE- . . .
whereg(t)dt is the fraction of initial conditions for the firs
collision with the moving wall occuring betweent and
t1dt and v is the probability to leave the wall after on
collision. As

g~ t !'
2dn

dt
, ~A5!

we have the law~A1! for the TDL. We stress that in the cas
of Fig. 9~a! the algebraic tail becomest'2/A2V0 but in
general, if we populate the low energy region such t
.

cs
t

uvu,uvmaxu,A2V0 we expect that the TDL exhibits a cros
over between a stretched exponential and the algebraic d
law ~A1! for long times as shown in Fig. 9~b!.

When the initial population excludes the very low ener
region, that is,uvminu<uvu<uvmaxu, we have numerical evi-
dence that the algebraic tail for long times follows 1/t2 ~see
Fig. 10!. So, it differs in one respect from the precedent. T
difference also occurs in the decay of other quasiboun
Hamiltonian systems when a parabolic region is initia
populated or it is populated in an indirect way in@20,21#.
.

@1# Ya.G. Sinai, Russ. Math. Surveys,25, 137 ~1970!.
@2# L.A. Bunimovich, Func. Anal. Appl.8, 254 ~1974!.
@3# A.J. Fendrik, A.F.M. Rivas, and M.J. Sa´nchez, Phys. Rev. E

50, 1948~1994!.
@4# A.J. Fendrik and M.J. Sa´nchez, Phys. Rev. E51, 2996~1995!.
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